
LA-UR-14-22050 (Accepted Manuscript)

Solvers for (O) (N) Electronic Structure in the Strong Scaling Limit

Bock, Nicolas
Challacombe, William M.
Kale, Laxmikant

Provided by the author(s) and the Los Alamos National Laboratory (2016-10-19).

To be published in: SIAM Journal on Scientific Computing

DOI to publisher's version: 10.1137/140974602

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-14-22050

Disclaimer:
Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos
National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the
Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

SOLVERS FOR O(N) ELECTRONIC STRUCTURE IN THE STRONG
SCALING LIMIT

NICOLAS BOCK , MATT CHALLACOMBE∗, AND LAXMIKANT V. KALÉ†

Abstract. We present a hybrid OpenMP/Charm++ framework for solving the O(N) Self-
Consistent-Field eigenvalue problem with parallelism in the strong scaling regime, P � N , where P
is the number of cores, and N a measure of system size, i.e. the number of matrix rows/columns, basis
functions, atoms, molecules, etc. This result is achieved with a nested approach to Spectral Projec-
tion and the Sparse Approximate Matrix Multiply [Bock and Challacombe, SIAM J. Sci. Comput. 35
C72, 2013], and involves a recursive, task-parallel algorithm, often employed by generalized N -Body
solvers, to occlusion and culling of negligible products in the case of matrices with decay. Employing
classic technologies associated with generalized N -Body solvers, including over-decomposition, recur-
sive task parallelism, orderings that preserve locality, and persistence-based load balancing, we obtain
scaling beyond hundreds of cores per molecule for small water clusters ([H2O]N , N ∈ {30, 90, 150},
P/N ≈ {819, 273, 164}) and find support for an increasingly strong scalability with increasing system
size N .

Key words. Sparse Approximate Matrix Multiply; Sparse Linear Algebra; SpAMM; Re-
duced Complexity Algorithm; Linear Scaling; Quantum Chemistry; Spectral Projection; N -Body;
Charm++; Matrices with Decay; Parallel Irregular; Space Filling Curve; Persistence Load Balancing;
Over-decomposition

AMS subject classifications. 65F15, 65-04, 65Z15, 15-04

1. Introduction. Ab initio electronic structure methods for the Self-Consistent-
Field (SCF) problem, involving pure density functional theory (DFT) [80, 91] or hy-
brid functionals that also include the Fock exchange [18], offer predictive power at
low cost, finding broad utility in chemistry, biology, materials science and drug de-
sign. With conventional methods, solving the SCF eigenvalue problem significantly
contributes to the total computational cost due to its steep O(N3) scaling [44, 59]
which in practice restricts problems to systems with ∼ 1, 000 atoms even on large
computers [66, 74, 131, 72]. Recently, alternative methods which are O(N) (linear
scaling) have been developed that exploit the local quantum nature of non-metallic
electronic interactions. Early approaches to linear scaling solutions of the SCF eigen-
problem sought to exploit this quantum locality by avoiding the pair-wise support
of local basis functions beyond a cutoff radius, leading to matrix sparsity and an
O(N) computational effort through iterative algorithms based on the sparse matrix-
matrix multiply (SpMM) [94, 34, 35, 128, 77]. Later, incomplete/inexact methods
based on the dropping of small elements (radial cutoffs/filtering) were developed
[94, 61, 106, 47]. While current linear scaling methods can access systems involv-
ing ∼ 1, 000, 000 atoms [32, 109, 133], they have yet to enjoy widespread scientific use
at scale, perhaps because the demands of configurational sampling likewise increase
with system size. Thus, parallel algorithms that reduce the time to solution per atom
are key in unlocking the scientific potential of O(N) methods. For an excellent review
and current state of the art see Bowler et al. [32, 33, 36].

A parallel SpMM implementation was first mentioned by Goringe et al. as part
of the CONQUEST code using a one dimensional, row-wise matrix decomposition,
although details were not reported [69]. Later, one of us introduced the distributed

∗Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA, nicolas-
bock@freeon.org
†Parallel Programming Laboratory, Department of Computer Science, University of Illinois at

Urbana-Champaign

1

ar
X

iv
:1

40
3.

74
58

v7
 [

cs
.N

A
]

 2
0

O
ct

 2
01

5

blocked compressed sparse row (DBCSR) data format and corresponding algorithm
for distributed sparse matrix multiplication, with space filling curve ordering and a one
dimensional, row-wise matrix decomposition based on the greedy bin packing problem,
demonstrating parallel efficiency of the SCF eigenproblem up to 128 cores [47]. More
recently, space filling curve ordering schemes to improve locality and data layout in
radial cutoff schemes [34, 37] and two-dimensional matrix decompositions [30] have
lead to improved efficiencies. Bowler et al. reported a scalable SpMM on 196,000
cores involving ∼ 1, 000, 000 atoms [32, 109], while VandeVondele et al. demonstrated
scalability of ∼ 1, 000, 000 atoms on 46,656 cores [133]. Also, generic methods for
the SpMM have been developed by Buluç et al. where matrix row and columns are
randomly permuted to achieve an even load distribution, yielding high efficiencies
[38, 39, 42, 41, 40]. This approach has been adopted for quantum chemistry with
a slightly modified Cannon algorithm [45], radial cutoffs, and static load balancing
based on a fixed graph [30].

These parallel approaches to the O(N) SCF eigenvalue problem, based on one-
or two-dimensional strategies for matrix decomposition, have established scalability
in the weak regime, P/N ≈ constant, where P is the number of cores and N is the
system size (see for example Fig. 1 of Ref. [36]). However, bounding communication
costs to achieve scalability beyond the weak regime remains challenging [17] and will
gain in importance for the increasingly large, asynchronous, and heterogeneous next
generation of high performance computing systems with P > 1, 000, 000 cores1. In
addition, current randomization strategies [38, 133] that forgo locality are throttled
to O(logP) [17] due to the cost of their communication algorithms, e.g. SUMMA
[132]; lowering these communication costs will require either an a priori knowledge
of sparsity patterns, or pre-computing and packing of non-zero elements before com-
munication [17]. So far, even prototypes of either strategy have yet to appear.

Recently we have developed an N -Body approach to the linear algebra of data-
local matrices with decay, involving the recursive occlusion of sub-multiplicative norms
based on the Cauchy-Schwarz inequality [50, 28, 27]. Besides wide application in phys-
ical simulation [137, 139, 140, 90, 82, 118, 75, 68, 111, 136, 135], N -Body methods find
broad applicability in statistical learning [71, 120, 110, 93, 92] and database operations
[108, 79]. Our Sparse Approximate Matrix Multiply (SpAMM) algorithm is loosely
comparable to the solution of Poisson’s equation through N -Body simulation with ra-
dial cutoff, which has been shown recently to exhibit communication optimal bounds,
O(1/P), for locality preserving spatial decompositions [64]. With heuristic schemes
that parlay quantum locality into spatial and temporal data locality, together with
persistence based load-balancing and three-dimensional over-decomposition strategies,
the communication cost of SpAMM may be limited in a similar fashion.

In modern electronic structure theory there are typically four additional “fast”
solvers beyond the SCF eigenproblem that must interoperate with each other, rep-
resenting a tightly coupled collective of advanced numerical methods. Historically,
these solvers have been developed and optimized independently, involving differing
data structures and programming models (e.g. 3-D FFT, CSR based SpMM, trans-
formations of basis function to numerical grids etc.). In the strong scaling regime,
such a piecemeal collection may: (a) disrupt data locality with redistributions and
transformations, (b) significantly raise the barrier to entry and innovation, (c) exceed

1Already, the number of cores in the current top 5 supercomputers is close to or even exceeds this
number: Tianhe-2 – 3,120,000 cores, Titan – 560,640 cores, Sequoia – 1,572,864 cores, K – 705,024
cores.

2

the ability of advanced runtime systems to load balance multiple programming mod-
els, (d) lead to divergent rates of error accumulation, and (e) impede deployment for
trends such as fine grained check-pointing [119, 147, 127], fault-tolerance [134], energy
aware load balancing [98, 125] and job malleability [88, 124].

We have recast all five solvers at the hybrid HF/DFT level of SCF theory within
the generalized N -Body solvers framework, including (1) Fock exchange [51], (2) spec-
tral projection (this work), (3) inverse factorization [52], (4) Coulomb summation
[53, 54, 55, 56] and (5) the exchange correlation problem [48]. These developments of-
fer a potential solution to challenges (a)-(e), through a unified approach with a proven
record of performance [137, 139, 140, 90, 82, 118, 75, 68, 111, 136, 135]. In this contri-
bution, we develop strategies for recursive over-decomposition and persistence-based
load balancing of the SpAMM kernel [50, 28] as employed by spectral projection,
an O(N) alternative to the SCF eigenvalue problem for matrices with decay [112].
Ultimately, generic N -Body frameworks and associated parallelization strategies, ex-
plored here in part, may lead to broad horizontal support and cohesion across entire
solver collectives, enabling access to the strong scaling regime for complex problems
such as electronic structure.

It should be pointed out that the density matrix constructed through purification
schemes, such as the method of Palser and Manolopoulos [116] and the SP2 method
[112] do not retain contact with the Hamiltonian eigenspace, exponentially accumu-
lating numerical errors under inexact/incomplete approximation [113]. In addition,
spectral projection solvers can not be preconditioned with the density matrix from
a previous step, e.g. within a molecular dynamics or structure optimization proce-
dure, negatively impacting overall performance [116]. On the other hand, variational
approaches such as the methods of Li, Nunes, Vanderbilt [94], and Daw [61] retain
contact with the eigenspace of the Hamiltonian through the gradient [31], however,
convergence can be very slow. More recently Newton-Schulz techniques have been
developed which yield accelerated rates of convergence, and maintain direct contact
with the Hamiltonian eigenspace [58, 52].

This paper is organized as follows: In Sec. 2 we describe in detail the SpAMM
algorithm and in Sec. 3 its parallel implementations within OpenMP and the Charm++

runtime. In Sec. 4 we detail our methodology and show parallel scaling results for
quantum mechanical matrices with decay and demonstrate scalable high-performance
in the strong scaling limit. Finally, we discuss our results in Sec. 5.

2. The Sparse Approximate Matrix Multiply. A wide class of problems
exist that involve matrices with decay, often corresponding to matrix functions [21],
notably the matrix inverse [63, 23], the matrix exponential [81], and in the case of
electronic structure theory, the Heaviside step function (spectral projector) [103, 116,
46, 47, 22, 19]. A matrix A is said to decay when its matrix elements decrease

exponentially, as |aij | < c λ|i−j|, or algebraically as |aij | < c/(|i− j|λ + 1) with
separation |i−j|. See Benzi for an excellent discussion [21, 23, 22, 20]. In simple cases,
the separation |i−j|may correspond to an underlying physical distance |~ri−~rj |, e.g. of
basis functions, finite elements, etc. [19], leading often to a strong diagonal dominance
when ordered carefully [47]. For simple decay, truncation in the two-dimensional
vector space, e.g. via radial cutoff aij = 0 if |~ri−~rj | > rcut [31], a numerical threshold
aij = 0 if |aij | < ε [47], or by restricting matrix operations to a known sparsity
pattern [30], together with the use of a conventional SpMM algorithm [73], yields a
reduced complexity kernel for the iterative construction of matrix functions. When
matrix operations are restricted to a known sparsity pattern, the matrices retain

3

their sparsity by construction throughout the iterative process. But when radial or
numerical truncation schemes are employed the matrices will fill-in unless repeatedly
filtered [33].

Truncation may not be the most efficient or accurate approach to exploiting decay,
which can be oscillatory, involve quantum beats, or even long range charge transfer
as in the case of excited states, see for example Ref. [49] and references therein.
In addition, exploiting the secondary “lensing” effects in higher dimensional opera-
tion spaces within truncation schemes is challenging [52]. These effects are shown in
Fig. 2.1, which shows a density matrix for a large water cluster with the underlying
basis ordered to preserve locality; note the large anti-diagonal beats, as well as the
strong clustering and segregation of elements with like magnitude. For this type of
structured matrix with non-trivial decay, the quadtree [122, 123, 141, 142]

At =

(
At+1

11 At+1
12

At+1
21 At+1

22

)
, (2.1)

where t denotes the tier, pioneered in linear algebra by Wise et. al [143, 14, 15, 65, 70,
97, 144], provides a powerful framework for recursive database operations such as the
metric-query [16, 79, 83], involving the lookup of sub-blocks by magnitude, ‖Atij‖. In
this work we use the Frobenius norm, which is cheap to hierarchically compute from
submatrix norms,

‖A‖ =

√∑
ij

|Aij |2 (2.2)

and

‖At‖ =

√√√√ 2∑
i,j=1

‖At+1
ij ‖2. (2.3)

Based on this framework, the SpAMM algorithm [50, 28]

Ctij ← Ctij +

2∑
k=1

{
AtikB

t
kj for ‖Atik‖‖Btkj‖ > τ

0 otherwise
(2.4)

exploits decay recursively in the three-dimensional convolution space, with adaptive
culling and occlusion of insignificant products at each tier t, determined by applica-
tion of the sub-multiplicative norm inequality, ‖AB‖ ≤ ‖A‖‖B‖, and a numerical
threshold τ controlling precision.

While the discussion has so far involved dense matrices, SpAMM is applicable to
sparse matrices as well. Also, even with dense matrices, large values of τ correspond
to an implicit truncation and potentially a sparse product. Relative to conventional
row-column approaches to the SpMM, the SpAMM algorithm applied to structured,
data-local matrices with decay may achieve: (i) additional flexibility in the three-
dimensional task space for domain decomposition and load balancing (this work),
(ii) the recursive accumulation of terms with like magnitude and an O(N lgN) error
accumulation [28, 25], (iii) occlusions that occur early in recursion enabling commu-
nication optimal approaches, (iv) a more efficient use of high level memory chunking
for message passing and low level blocking strategies for acceleration (also this work),
and (v) additional flexibility for achieving error control within a culled volume, and
complexity reduction via lensing.

4

Fig. 2.1: The decay of matrix element magnitudes of a converged spectral projector
(density matrix) for a (H2O)300 water cluster at the RHF/6-31G∗∗ level of theory
(n = 7500), where the molecular geometry has been reordered with a space filling
Hilbert curve. The different colors indicate different matrix element magnitudes; red:[
0, 10−8

)
; green:

[
10−8, 10−6

)
; blue:

[
10−6, 10−2

)
; violet:

[
10−2, 1

]
, corresponding to

approximate exponential decay.

3. Task Over-Decomposition. One of the strengths of the generalized N -
Body framework is that there are many ways to realize over-decomposition on a range
of hardware, e.g. from long pipe GRAPE single instruction, multiple data (SIMD)
accelerators [111, 101, 100, 99, 89] to conventional symmetric mulitprocessing (SMP)
and multiple instruction, multiple data (MIMD) architectures [79, 95, 135, 139, 138,
137, 140, 68, 75, 82, 90, 118]. Ideally, an architecture independent runtime system
seamlessly enables the recursive generation of lightweight tasks, as OpenMP 3.0 does
for SMP. However, while this feature is a target of the Dynamic Parallelism framework
of NVIDIA’s CUDA 5.0 [4] and at least partially included in a number of parallel

5

runtimes such as Intel’s Threading Building Blocks (TBB) [6], Concurrent Collections
(e.g. Intel’s CnC [3]), Wool [13], Nanos++ [7], OpenUH [11], Intel’s Cilk Plus [5], the
Open Community Runtime (OCR) [8], OpenCL [9], TASCEL [12], etc., full support
for recursive task parallelism is mostly unrealized for distributed memory systems
at present. In this work, we consider simple methods for achieving recursive task
parallelism with SpAMM for the ubiquitous “cluster of SMP nodes” architecture [129,
76, 145, 62] using two runtimes, OpenMP and Charm++, within a hybrid approach.

There are two main considerations in our scheme that involve memory and task
management: First, the näıve use of task parallelism at the SMP level, with either
OpenMP or Charm++, has the potential to involve non-contiguous memory and high
packing/unpacking overheads when redistributing memory between nodes, potentially
negatively impacting overall performance. Additionally, the cache hierarchy of modern
CPUs with small, local caches and large, shared last level caches should not be ignored.
Second, an explicitly allocated, unrolled octree is a necessary structure that enables
Charm++ to manage tasks involving occlusion and culling as well as node-level SMP
work due to limitations of the load-balancing framework implemented in Charm++.

Thus, we allocate contiguous chunks of size Nc ×Nc to hold a full sub-quadtree
together with a Nb × Nb blocking at the lowest level. The chunks are processed
using OpenMP and the code can potentially be used without modification on the
Intel Xeon Phi coprocessor and through automatic source code translation [114, 102,
121, 57] on GPGPUs. In addition, the use of OpenMP removes Charm++ compile and
runtime dependencies for single-node applications, potentially significantly simplifying
the build process.

We expect the overall performance to be influenced by several competing size-
dependent effects: (1) The ratios N/Nc and Nc/Nb limit the maximum number of
tasks available for load-balancing for Charm++ and OpenMP respectively, and (2)
the leaf node size Nb affects the performance of memory access through the CPU’s
cache hierarchy and the potential for vectorization and convolution space compression.
While we previously demonstrated that a highly specialized and optimized dense
kernel can lead to competitive performance for very small dense submatrices of Nb =
4 [28], the use of manually tuned assembly code renders this approach rigid with
respect to submatrix granularity and width of SIMD vectors. Thus, in this work, we
implemented a simple kernel with three nested loops and leave low-level optimizations
to the compiler.

3.1. OpenMP. Shown in Alg. 1 is the SMP parallel implementation within the
OpenMP application programming interface; SpAMM omp recursively walks a transient
octree generated dynamically on the stack through the OpenMP 3.0 tasking feature
[10]. Guided by the binary convolution of matrix quadtrees At and Bt at each tier t
(line 3), the implicit octree traversal may be sparse and irregular due to culling and
occlusion (line 4) based on the sub-multiplicative matrix norm inequality, ‖AB‖ ≤
‖A‖‖B‖. The parallel tree traversal is extended through untied OpenMP tasks (line
5) and recursive calls to SpAMM omp (line 6). Per node synchronization (to ensure
appropriate variable lifetimes) is achieved through the OpenMP taskwait statement
(line 9). Finally, at the leaf tier, dense matrix products are performed and the result
reduced into the C quadtree (line 12), with a data race on C prevented through explicit
use of OpenMP locks (lines 11, 13). While other approaches to address data write
contention are certainly possible, e.g. OpenMP reductions or atomics, we found good
on-node parallel scaling using explicit locks, and defer such potentially performance
enhancing details to a forthcoming article.

6

In this work we have made only modest effort to optimize the SpAMM omp imple-
mentation, or even the dense contraction on line 12. In Ref. [28] we showed that
accuracies better than the native GEMM are possible also with N -scaling, but that
difficult, platform specific optimizations were necessary; we are currently developing
a corresponding OpenMP algorithm and are investigating the use of compiler vector-
ization and OpenMP 4.0 SIMD constructs [10].

Algorithm 1 The OpenMP SpAMM algorithm, recursively multiplying matrices
C ← A×B under a SpAMM tolerance τ . The function matrix arguments are pointers
to tree nodes.

1: function SpAMM omp(τ , t, At, Bt, Ct)
2: if t < depth then

3: for all
{
i, j, k

∣∣∣ Ctij ← AtikB
t
kj

}
do

4: if ‖Aik‖ ‖Bkj‖ > τ then . Culling
5: OpenMP task untied

6: SpAMM omp(τ , t+1, At+1
ik , Bt+1

kj , Ct+1
ij)

7: end if
8: end for
9: OpenMP taskwait

10: else
11: omp set lock . Acquire OpenMP lock on C
12: C ← C +A×B . Dense product
13: omp unset lock . Release OpenMP lock on C
14: end if
15: end function

3.2. Charm++. Charm++ [2] is a mature runtime environment on distributed
memory platforms available for all major supercomputer systems, allowing for efficient
scalable high performance implementations [105, 125, 86, 96, 85, 67, 104, 87, 24, 146].
In the message-driven execution model of Charm++, code and data are encapsulated
in C++ objects called “chares” which are initially placed by static load balancing al-
gorithms. Dynamic persistence-based load balancing strategies migrate chares trans-
parently during solver execution based on load and communication measurements
from previous solver iterations and efficiently optimize load distribution and com-
munication cost. The Charm++ runtime transparently manages chare placement and
migration and proxy objects are used to send messages to particular chare instances or
groups thereof without explicit specification of their location. Chares can be grouped
in multi-dimensional sparse arrays or used as “singleton” objects.

Persistence-based load balancing exploits temporal and spatial localities in iter-
ative solvers through decomposition of the load and communication graph. Since
the dynamic load balancing strategies of Charm++ only consider chares organized in
arrays persistently instantiated across solver operations and load balancing, the mul-
tiplication octree has to be explicitly stored in memory (as opposed to the transient
stack based “storage” used in the SMP implementation). Note that such persis-
tent allocation of the multiplication octree could aid efficient load balancing across
molecular dynamics or structure optimization steps, see e.g. the impressive scaling
of astrophysics applications [67, 84, 135]. The nodes of the matrix quadtree between
root, t = 0, and chunks, t = tc, given by Nc, are stored in a stack of two-dimensional

7

chare arrays of size 2t×2t each. The corresponding unrolled octree is stored in three-
dimensional chare arrays with occlusion and culling carried out iteratively, tier-by-tier,
until the chunk level at which SpAMM omp is invoked.

Data and work locality are exploited through the communication aware load bal-
ancing strategies in Charm++. However, at the time of this writing, a bug in the
Charm++ runtime [26] prevents the use of sparse load balanced chare arrays. As a
work-around, we mark chares that correspond to pruned tree nodes with a boolean
data member, isDisabled == true, introducing aO(N3) communication component
with a prefactor found to be negligible.

Algorithm 2 The SpAMM algorithm in the Charm++ programming language. Tree
occlusion is done by iterating over the three-dimensional multiplication chare arrays,
convolution[d]. In Charm++ a call such as convolution[t].occlude translates
into a broadcast to all array elements of convolution[t].

1: function SpAMM charm(τ , A, B, C)
2: for t ≥ 0 ∧ t < d do
3: convolution[t].occlude(τ) . See Alg. 3
4: end for
5: convolution[d].multiply
6: convolution[d].store
7: end function

The Charm++ algorithm is outlined in Alg. 2 and proceeds in three phases. In
the first phase, the multiplication octree is constructed iteratively over the top tiers of
the three-dimensional chare arrays, shown in lines 2 and 3 of Alg. 2. This phase is a
breadth-first implementation of the SpAMM algorithm and retains the full complexity
reduction of the depth-first, recursive implementation, Alg. 1. In each iteration of
this phase, a broadcast message is sent to all multiplication chares of tier t (line 3)
executing the occlude method on the enabled array elements, shown in Alg. 3. The
scalar products of the eight matrix norms of the A and B nodes of the next tier are
formed, lines 6-10 of Alg. 3, and Eq. 2.4 is used to decided whether to enable or disable
the corresponding multiplication chares. Disabled multiply chares (isDisabled ==

true) are skipped during the next iteration of the pruning phase, shown in lines 2-4
of Alg. 2.

During the second phase, line 5 of Alg. 2, the SMP SpAMM code is called to
compute the Nc ×Nc submatrix products in each remaining, enabled multiplication
chare, and the results are stored in a temporary variable local to the chare. In the
final phase, line 6 of Alg. 2, all temporary matrix products are gathered in the store
method, summed, and added to the corresponding chares of C. Since the Charm++

runtime guarantees exclusive execution of chare instances, explicit locking or other
means of synchronization as in the OpenMP implementation are not necessary.

3.3. The OpenMP/Charm++ Hybrid. In our hybrid approach, we found
the best performance with one Charm++ Processing-Element (PE) per node, OpenMP
commanding all on-node threads and Nc×Nc quadtree chunking as discussed above.
This approach avoids the problem of packing and unpacking fragmented memory
during chare migration, enabling use of a single memcpy, which is efficient in standard
libraries such as libc. Certainly, optimal chunk and block sizes are likely to be
application dependent, an issue beyond the scope of the current work. A further
complication of the hybrid approach involves the issue of local vs. absolute addressing;

8

Algorithm 3 Tree occlusion in the Charm++ programming language of the
multiplication chare element on tier t with index (i, j, k). In Charm++ the call
convolution[t + 1](i, j, k).enable translates into a direct message to the enable
method of the multiplication chare element with index (i, j, k) on tier t+ 1.

1: function occlude(τ) . On tier t, index (i, j, k) ∈ [1, 2t]
2: if isDisabled then
3: return
4: end if
5: for all

{
i′, j′, k′

∣∣∣ Ct+1
i′,j′ ← At+1

i′k′B
t+1
k′j′

}
do

6: if ‖At+1
i′k′‖‖B

t+1
k′j′‖ > τ then

7: convolution[t+ 1](i′, j′, k′).enable
8: else
9: convolution[t+ 1](i′, j′, k′).disable

10: end if
11: end for
12: end function

by wrapping an address offset with convenience macros, the OpenMP application
programming interface given in Alg. 1 can be used without modification.

4. Results. In this work we consider scalability of the SpAMM kernel in the
context of spectral projection [103, 116, 46, 47, 22, 19], an alternative to explicitly
solving the SCF eigenvalue problem [130]. Spectral projection involves nested con-
struction of the matrix Heaviside step-function from the effective SCF Hamiltonian
(Fockian), in our case computed in a basis of atom-centered functions [130]. In this
work, tightly converged, dense matrices for a sequence of water clusters were com-
puted at the B3LYP/6-31G** level of theory [18] using FreeON, a suite of programs
for O(N) quantum chemistry [29]. This sequence of water clusters corresponds to
standard temperature and pressure, and has been used in a number of previous stud-
ies [56, 55, 53, 43, 126, 107, 60, 115, 28]. The 6-31G** basis set introduces 5 basis
function per hydrogen atom and 15 basis functions per oxygen atom, yielding 25 ba-
sis functions (and matrix rows and columns) per water molecule. A key aspect of
this work is ordering of the atom indices with the locality preserving Hilbert curve,
Ref. [47] and references therein, yielding clustering and segregation of elements by
magnitude as in Fig. 2.1.

In a previous study [28], we reported linear scaling computational complexities
and SpAMM errors as the max norm of the difference between the SpAMM product
and a dense reference product. Here, we consider SpAMM errors that accumulate
in iterative application of the second order spectral projection scheme (SP2) [112].
In all cases, the SP2 solver was run to convergence, taking 40 iterations. Values of
τ = 10−6, 10−8, and 10−10 are considered for scaling experiments, with τ = 10−6

corresponding to extreme truncation (a highly sparse representation).

All OpenMP scaling studies were run on a fully allocated 48-core, 4-socket AMD
Opteron 6168 (Magny Cours architecture) system running at 1.9 GHz using GNU gcc

4.6.3, and a 24 core, 2-socket AMD Opteron 6176 (Magny Cours architecture) system
running at 2.3 GHz using GNU gcc 4.7.2. The Charm++ scaling studies were run
on the largest open computer cluster at Los Alamos National Laboratory (LANL),
“mustang”, which consists of 1,600 dual socket AMD Opteron 6176 (Magny Cours)

9

Fig. 4.1: The absolute error of the energy after 40 iterations of the spectral projection
method for different water clusters in B3LYP/6-31G∗∗.

nodes for a total of 38,400 cores using GNU gcc 4.7.2. All tests used the -O2 level of
compiler optimization.

4.1. Error Accumulation. The accumulation of error in spectral projection
due to the SpAMM kernel is computed here as Tr[F (P − P̃)], where F is the Fockian,
P̃ is the approximate density matrix computed from F with τ 6= 0, and P is a reference
computed with τ = 0. These errors are reported in Fig. 4.1, demonstrating that the
error per molecule exhibits no significant system size dependence for the cases studied
here, in agreement with our earlier results on the max norm error behavior of SpAMM,
Figs. 5.2 and 5.3 of Ref. [28]. Roughly, these results suggest that chemical accuracy
(1 kcal/mol or 4.184 kJ/mol [78]) may be retained with 105 water molecules and a
SpAMM threshold of τ = 10−10. As discussed in Sec. 2, the control of accumulated
errors in the spectral projection solver is challenging due to the non-variational nature
of the solver. However, our results indicate good error control even under extreme
truncation conditions (τ = 10−6) due to the recursive occlusion and culling based
on the sub-multiplicative norm inequality, as opposed to matrix element truncation
directly in the vector space.

4.2. OpenMP scaling. SpAMM omp (Alg. 1) was benchmarked for the last SP2
iteration of the (H2O)90 and (H2O)150 density matrices with a loose SpAMM tolerance
of τ = 10−6. These examples are well within the linear scaling regime for SpAMM
calculations [28], yet small enough to probe a lower molecule/core ratio available

10

(a) SpAMM omp restricted to 1 thread. (b) SpAMM omp on all 48 threads.

Fig. 4.2: Total time of matrix product for (H2O)90 of SpAMM omp with τ = 10−6

restricted to one thread, (a), and on 48 threads, (b), on the Opteron 6168. In serial,
we find the measured walltime to be independent of Nc, but to depend strongly on
Nb. Note that Nb > 64 exceeds L1d leading to significant performance loss. An
increase in compression due to smaller granularity leads to decreasing walltime with
decreasing Nb, and an optimal block size of Nb = 16. Tests with τ = 0 indicate that
the optimal block size in serial without compression is Nb = 64. On 48 threads, the
shortest walltime shifts from Nb = 16 to Nb = 64, shown in (b), which indicates poor
memory access performance and is potentially due to a lack of cache/core affinity.
It is worth noting that we find a large spread in performance for Nb = 4 across the
chunk sizes tested.

(a) 48-core Opteron 6168. (b) 24-core Opteron 6176.

Fig. 4.3: Parallel efficiency of OpenMP code with different granularities for B3LYP/6-
31G** (H2O)90 and (H2O)150 with τ = 10−6. The best performing combination of
Nc/Nb at the maximum number of threads (P = 48) was chosen for each value of Nc
tested. Note that the native matrix size of 2, 250× 2, 250 is padded to 4, 096× 4, 096.
There is little difference between the two water clusters. While larger chunks exhibit
good parallel efficiency, we find a significant drop of parallel scaling for the smaller
chunks.

11

on modern SMP platforms. In addition, such a loose SpAMM tolerance leads to
irregular work loads and data access, potentially challenging the OpenMP runtime.
Shown in Fig. 4.2 are walltimes for the smaller water cluster, (H2O)90, under several
combinations of Nb and Nc in serial (OpenMP restricted to one thread), (a), and on 48
threads, (b). We find the overall performance and parallel scaling to be significantly
influenced by Nc and Nb. While the performance in serial, Fig. 4.2 (a), is mostly
independent of the tested chunk sizes, Nc = {128, 256, 512, 1024, 2048, 4096}, it is
significantly impacted by the size of Nb. For large values, Nb > 64, we note a steep
rise in walltime which we attribute to a lack of temporal locality in cache due to the
size of per core L1d of 128KiB. The improving performance with decreasing block size,
Nb ≤ 64, is due to increasing compression in convolution space due to finer granularity.
Tests with τ = 0 indicate that the optimal block size in serial is Nb = 64. However,
on 48 cores we find that the shortest walltime shifts from Nb = 16 to Nb = 64, which
indicates poor memory access performance and might be due to a lack of thread/data
affinity. Also, on 48 threads we find the walltime to depend more strongly on Nc,
which we attribute to a lack of potential tasks for shallow trees, indicated by small
ratios Nc/Nb.

In addition to walltime, it is instructive to investigate the parallel efficiency of
SpAMM omp. For each value of Nc we chose the value of Nb, yielding the fastest (lowest
walltime) performance at 48 threads, and calculated the parallel efficiency as E(P) =
T (1)/(P T (P)), where P denotes the number of threads, shown in Fig. 4.3. We note
that efficiencies up to 80% can be achieved for large chunks. As Nc/Nb and the
number of potential tasks decreases (4096/64→ 262, 144 potential tasks, 2048/64→
32, 768 potential tasks, . . .) load balancing becomes increasingly challenging with
a significant decline in parallel efficiency. Compared to (H2O)90, the larger water
cluster, (H2O)150, exhibits a slightly superior parallel scaling for the larger chunks.
However, the qualitative behavior with decreasing chunk size remains the same.

4.3. Charm++ Scaling. This study involved scaling with the progression P =
24 × 2m, up to 24,576 cores (1024 nodes) on LANL’s largest open computer clus-
ter “mustang”. The study consisted of spectral projection via the SP2 method
until convergence (40 iterations) with m = 1, 2, . . . , 10, and τ = 10−6, 10−8, and
10−10. The initial data distribution during the first SP2 iteration was given by the
Charm++ default static load balancer. After each iteration of the SP2 algorithm,
the GreedyCommLB load balancer of Charm++ was called to migrate matrix and mul-
tiply chares in order to rebalance work and data. To demonstrate the efficiency of
the GreedyCommLB load balancer, we show walltime vs. cores for the first iteration
(only statically balanced), panels (a)-(c) of Fig. 4.4, and for the final iteration, panels
(d)-(f) of Fig. 4.4. Notice that the difference in wall time between the first and last
iteration is due to matrix fill-in (the decay slows from Fockian to density matrix). On
the first iteration, we observe scaling roughly to P = 30 N , corresponding to the de-
fault Charm++ data distribution. After a few iterations however, the communication
aware persistence-based GreedyCommLB load balancer dynamically migrates chares to
achieve a balance of very high quality. In applications, the persistence-based load
balance will remain effective between SCF cycles, and also as atomic-positions grad-
ually evolve, e.g. in a molecular dynamics simulation, geometry optimization, etc.,
mitigating inefficiencies associated with the first iterations.

In Table 4.1, we list parameters for the fits to Amdahl’s law, T τ
s + T τ

p /p, corre-
sponding to the fitted lines in panels (d)-(f) of Fig. 4.4. Also given in Table 4.1 are
the corresponding break-even core counts, P τ

even = T τ
p /T

τ
s , the ratio between parallel

12

τ (H2O)N matrix Ts [s] Tp [s] Peven

10−10
30 750 1.95 1,981 1,016
90 2,250 1.66 53,481 32,252

150 3,750 2.74 224,825 81,909

10−8
30 750 2.05 1,981 966
90 2,250 1.41 46,459 32,898

150 3,750 2.48 149,819 60,364

10−6
30 750 1.80 1,621 899
90 2,250 1.11 30,983 28,007

150 3,750 2.55 65,284 25,553

Table 4.1: Fit parameters for Amdahl’s law, Ts + Tp/P , corresponding to the curves
in panel (d)-(f) of Fig. 4.4. Matrix dimensions are shown in the third column la-
beled “matrix”. Also listed is the break-even core-count Peven = Tp/Ts, providing a
conservative estimate of parallel scalability.

and serial components. The break-even core count is a conservative estimate of the
core count at which additional scaling becomes ineffective due the left-over serial com-
ponent, which was found to be 1-3 seconds in all cases. Also, we notice a pronounced
decrease in the parallel component with increasing values of τ , due to sparse-irregular
effects. It should be noted that this analysis is a useful quantitative guide despite it
being simplistic in ignoring more subtle scaling effects such as for example the scaling
behavior of communication collectives and the details of network topology.

5. Conclusions. Relative to the ≈ 4 heavy atoms/core granularity achieved in
the weak limit by advanced parallel methods [36], the default “static” distribution
of work exhibited by our OpenMP/Charm++ implementation achieves roughly P =
30 N , as shown in panels (a)-(c) of Fig. 4.4. Assuming 1 water molecule ≈ 2 heavy
atoms, our default is ∼ 60× more scalable. Once persistence is employed however,
our results extend into the strong scaling regime, yielding P = 400 N to 600 N as
inferred from Table 4.1. For working accuracies and larger systems, e.g. N � 150
and τ ∈ {10−8, 10−12}, we expect substantially better results as suggested by Table
4.1. We also expect substantially better results for problems with slower decay, as for
example problems involving semi-conductors and metal oxides.

Based on the results given in Fig, the (very modest) serial component seems to be
due to the Charm++ runtime. Larger calculations on larger computers will allow the
reliable collection of diagnostics, as well as examination of the relationships between
data locality and communication.

While our recursive, depth-first implementation of SpAMM with OpenMP ex-
hibits good parallel scaling for larger chunk sizes, further improvements, including
parallel performance at fine granularities, may require more explicit approaches to
exploiting the inherent temporal and spatial localities present in SpAMM and to
make contact with the deep memory cache hierarchy of the Magny-Cours architec-
ture. Also, other computer platforms may not exhibit the pronounced non-uniform
memory access (NUMA) effects common to the AMD Magny-Cours architecture, and
we may expect the parallel performance of SpAMM omp on those platforms to show
improved scaling. Finally, it is known that the runtime has significant impact on
the performance of SpAMM-like workloads [117], and other programming frameworks

13

(a) First SP2 iteration, τ = 10−10. (b) First SP2 iteration, τ = 10−8.

(c) First SP2 iteration, τ = 10−6. (d) Last SP2 iteration. τ = 10−10.

(e) Last SP2 iteration, τ = 10−8. (f) Last SP2 iteration. τ = 10−6.

Fig. 4.4: Shown in panels (a)-(c), scaling results of the first SP2 iteration under
different thresholds. Shown in panels (d)-(f), scaling results of the last and fully load-
balanced iteration (iteration 40) of SP2, under the same thresholds. As a guide, fits to
Amdahl’s law, Ts+Tp/p, are shown as solid lines, see Table 4.1 for fitting parameters.

might lead to improved parallel scaling.

These satisfactory results follow from over-decomposition of the three-dimensional
convolution space, relative to conventional methods that involve decomposition in
one or two dimensions, and from runtime systems that support the irregular task
parallelism inherent in the generalized N -Body solvers framework. The ability to

14

recursively generate singleton chares would greatly simplify the implementation of N -
Body methods, and enhance their efficiency by eliminating the explicit management
of tree-traversal as explained in Section 3.2. This prospect, together with a unified
code base for N -Body solver collectives (based on established prototypes [51, 52, 53,
54, 55, 56, 48]), may offer a simple and well posed approach to meeting the challenges
of increasing hardware complexity.

The software written for and used in this study is available online at http://

www.freeon.org/spammpack [27], licensed under the terms of the BSD license [1].

6. Acknowledgments. NB and MC thank the LDRD program for funding this
research under LDRD-ER grant 20110230ER. Both would also like to acknowledge
generous support from the Ten-Bar Café providing stimulating and helpful discus-
sions. This article was released under LA-UR-14-22050. The Los Alamos National
Laboratory is operated by Los Alamos National Security, LLC for the NNSA of the
USDoE under Contract No. DE-AC52- 06NA25396.

REFERENCES

[1] BSD 3-Clause License. http://opensource.org/licenses/BSD-3-Clause.
[2] Charm++. http://charm.cs.uiuc.edu/.
[3] Concurrent Collections. https://software.intel.com/en-us/articles/

intel-concurrent-collections-for-cc.
[4] CUDA Programming Guide. http://docs.nvidia.com/cuda/.
[5] Intel Cilk Plus. https://www.cilkplus.org/.
[6] Intel Threading Building Blocks. https://www.threadingbuildingblocks.org/.
[7] Nanos++. https://pm.bsc.es/nanox.
[8] Open Community Runtime. https://01.org/open-community-runtime.
[9] OpenCL. https://www.khronos.org/opencl/.

[10] OpenMP. http://openmp.org/.
[11] OpenUH: Open-source UH Compiler. http://web.cs.uh.edu/~openuh/.
[12] TASCEL. http://hpc.pnl.gov/tascel/.
[13] Wool - Fine Grained Independent Task Parallelism in C.
[14] S. Kamal Abdali and David S. Wise, Experiments with quadtree representation of matrices,

in Symbolic and Algebraic Computation, P. Gianni, ed., vol. 358 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 1989, pp. 96–108.

[15] Michael D. Adams and David S. Wise, Seven at one stroke: results from a cache-oblivious
paradigm for scalable matrix algorithms, in Proceedings of the 2006 workshop on Memory
system performance and correctness, MSPC ’06, New York, NY, USA, 2006, ACM, pp. 41–
50.

[16] R. R. Amossen and R. Pagh, Faster join-projects and sparse matrix multiplications, in Pro-
ceedings of the 12th International Conference on Database Theory, ACM, 2009, pp. 121–
126.

[17] Grey Ballard, Aydın Buluç, James Demmel, Laura Grigori, Benjamin Lipshitz,
Oded Schwartz, and Sivan Toledo, Communication Optimal Parallel Multiplication
of Sparse Random Matrices, in Proceedings of the Twenty-fifth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’13, New York, NY, USA, 2013,
ACM, pp. 222–231.

[18] Axel D. Becke, Density-Functional thermochemistry. III. The role of exact exchange, The
Journal of Chemical Physics, 98 (1993), pp. 5649–5652.

[19] Michele Benzi, Paolo Boito, and Nader Razouk, Decay properties of spectral projectors
with applications to electronic structure, arXiv:math.NA, 1203.3953 (2012).

[20] , Decay Properties of Spectral Projectors with Applications to Electronic Structure,
SIAM Review, 55 (2013), pp. 3–64.

[21] Michele Benzi and Gene H. Golub, Bounds for the entries of matrix functions with appli-
cations to preconditioning, BIT, 39 (1999), pp. 417–438.

[22] Michele Benzi and Nader Razouk, Decay Bounds and O(n) Algorithms for Approximating
Functions of Sparse Matrices, Electron. T. Numer. Ana., 28 (2007), p. 16.

15

http://www.freeon.org/spammpack
http://www.freeon.org/spammpack
http://opensource.org/licenses/BSD-3-Clause
http://charm.cs.uiuc.edu/
https://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
https://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://docs.nvidia.com/cuda/
https://www.cilkplus.org/
https://www.threadingbuildingblocks.org/
https://pm.bsc.es/nanox
https://01.org/open-community-runtime
https://www.khronos.org/opencl/
http://openmp.org/
http://web.cs.uh.edu/~openuh/
http://hpc.pnl.gov/tascel/

[23] Michele Benzi and Miroslav Tuma, Orderings for factorized sparse approximate inverse
preconditioners, SIAM J. Sci. Comput., 21 (2000), pp. 1851–1868.

[24] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin Zheng, and
Laxmikant V. Kalé, NAMD: A Portable and Highly Scalable Program for Biomolecular
Simulations, Tech. Report UIUCDCS-R-2009-3034, Department of Computer Science,
University of Illinois at Urbana-Champaign, February 2009.

[25] Dario Bini and Grazia Lotti, Stability of fast algorithms for matrix multiplication, Nu-
merische Mathematik, 36 (1980), pp. 63–72.

[26] Nicolas Bock, Bug #445: Communication aware load balancers fail on chare arrays that
are not full.

[27] Nicolas Bock and Matt Challacombe, spammpack, A High-Performance Implemenation
of SpAMM, 2011. http://www.freeon.org/spammpack.

[28] , An Optimized Sparse Approximate Matrix Multiply for Matrices with Decay, SIAM
Journal on Scientific Computing, 35 (2013), pp. C72–C98.

[29] Nicolas Bock, Matt Challacombe, Chee Kwan Gan, Graeme Henkelman, Karoly
Nemeth, Anders M. N. Niklasson, Anders Odell, Eric Schwegler, C. J. Tymczak,
and Valery Weber, FreeON: A suite of programs for linear scaling quantum chemistry,
2011. http://www.freeon.org/.

[30] Urban Borštnik, Joost VandeVondele, Valéry Weber, and Jürg Hutter, Sparse matrix
multiplication: The distributed block-compressed sparse row library, Parallel Computing,
40 (2014), pp. 47 – 58.

[31] D.R. Bowler and M.J. Gillan, Density matrices in O(n) electronic structure calculations:
theory and applications, Computer Physics Communications, 120 (1999), pp. 95 – 108.

[32] David R. Bowler and T. Miyazaki, Calculations for millions of atoms with density func-
tional theory: linear scaling shows its potential, Journal of Physics: Condensed Matter,
22 (2010), p. 074207.

[33] , O(n) methods in electronic structure calculations, Reports on Progress in Physics, 75
(2012), p. 036503.

[34] David R. Bowler, T. Miyazaki, and M. J. Gillan, Parallel sparse matrix multiplication
for linear scaling electronic structure calculations, Computer Physics Communications,
137 (2001), pp. 255 – 273.

[35] , Recent progress in linear scaling ab initio electronic structure techniques, Journal of
Physics: Condensed Matter, 14 (2002), p. 2781.

[36] David R. Bowler, Tsuyoshi Miyazaki, Lionel A. Truflandier, and Michael J.
Gillan, Comment on ”Accurate and Scalable O(N) Algorithm for First-Principles
Molecular-Dynamics Computations on Large Parallel Computers”, arXiv:cont-mat.mtrl-
sci, 1402.6828 (2014).

[37] V. Brázdová and David R. Bowler, Automatic data distribution and load balancing with
space-filling curves: implementation in CONQUEST, Journal of Physics: Condensed
Matter, 20 (2008), p. 275223.

[38] Aydın Buluç and John R. Gilbert, Challenges and Advances in Parallel Sparse Matrix-
Matrix Multiplication, in ICPP ’08: Proceedings of the 2008 37th International Conference
on Parallel Processing, Washington, DC, USA, 2008, IEEE Computer Society, pp. 503–
510.

[39] , On the representation and multiplication of hypersparse matrices, in 2008 IEEE Inter-
national Symposium on Parallel and Distributed Processing, IEEE, Apr. 2008, pp. 1–11.

[40] , On the representation and multiplication of hypersparse matrices, in Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, April
2008, pp. 1–11.

[41] , Highly parallel sparse matrix-matrix multiplication, Technical Report UCSB-CS-2010-
10, University of California, 2010.

[42] , Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Ex-
periments, Arxiv preprint arXiv:1109.3739, (2011).

[43] John C. Burant, Gustavo E. Scuseria, and Michael J. Frisch, A linear scaling method for
Hartree–Fock exchange calculations of large molecules, The Journal of Chemical Physics,
105 (1996), pp. 8969–8972.

[44] Eric J Bylaska, Kevin Glass, Doug Baxter, Scott B Baden, and John H Weare,
Hard scaling challenges for ab initio molecular dynamics capabilities in NWChem: Using
100,000 CPUs per second, Journal of Physics: Conference Series, 180 (2009), p. 012028.

[45] L. E. Cannon, A Cellular Computer to Implement the Kaiman Filter Algorithm, PhD thesis,
Ph. D. Dissertation, Montana State University, 1969.

[46] Matt Challacombe, A simplified density matrix minimization for linear scaling self-

16

http://www.freeon.org/spammpack
http://www.freeon.org/

consistent field theory, J. Chem. Phys., 110 (1999), pp. 2332–2342.
[47] , A general parallel sparse-blocked matrix multiply for linear scalingSCF theory.,

Comp. Phys. Comm., 128 (2000), p. 93.
[48] , Linear scaling computation of the Fock matrix. V. hierarchical cubature for numerical

integration of the exchange-correlation matrix, J. Chem. Phys., 113 (2000), p. 10037.
[49] Matt Challacombe, Linear Scaling Solution of the Time-Dependent Self-Consistent-Field

Equations, Computation, 2 (2014), pp. 1–11.
[50] Matt Challacombe and Nicolas Bock, Fast Multiplication of Matrices with Decay,

arXiv:cs.DS, 1011.3534 (2010).
[51] , An N-Body Solution to the Problem of Fock Exchange, arXiv preprint arXiv:1401.6961,

(2014).
[52] , On the scalibility of Newton Schulz Iterations in an Approximate Linear Algebra, in

preparation, (2015).
[53] Matt Challacombe and Eric Schwegler, Linear scaling computation of the Fock matrix,

J. Chem. Phys., 106 (1997), p. 5526.
[54] Matt Challacombe, Eric Schwegler, and Jan Almlöf, Computational Chemistry: Re-

view of Current Trends, World Scientific, Singapore, 1996, pp. 53–107.
[55] , Fast assembly of the Coulomb matrix: A quantum chemical tree code, J. Chem. Phys.,

104 (1996), pp. 4685–4698.
[56] , Modern Developments in Hartree-Fock Theory: Fast Methods for Computing the

Coulomb Matrix, in Computational Chemistry: Reviews of Current Trends, J. Leszczyn-
ski, ed., vol. 1 of Computational Chemistry: Reviews of Current Trends, World Scientific,
Singapore, 1996, pp. 53–107.

[57] Chen-Ting Chang, Yu-Sheng Chen, I-Wei Wu, and Jyh-Jiun Shann, A Translation
Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Func-
tion, in Advances in Intelligent Systems and Applications - Volume 2, Jeng-Shyang Pan,
Ching-Nung Yang, and Chia-Chen Lin, eds., vol. 21 of Smart Innovation, Systems and
Technologies, Springer Berlin Heidelberg, 2013, pp. 627–636.

[58] Jie Chen and Edmond Chow, A Newton-Schulz Variant for Improving the Initial Conver-
gence in Matrix Sign Computation, Preprint ANL/MCS-P5059-0114, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, 2014.

[59] Edmond Chow, Xing Liu, Mikhail Smelyanskiy, and Jeff R Hammond, Parallel scalability
of Hartree–Fock calculations, The Journal of Chemical Physics, 142 (2015), p. 104103.

[60] Andrew D. Daniels, John M. Millam, and Gustavo E. Scuseria, Semiempirical methods
with conjugate gradient density matrix search to replace diagonalization for molecular
systems containing thousands of atoms, The Journal of Chemical Physics, 107 (1997),
pp. 425–431.

[61] Murray S. Daw, Model for energetics of solids based on the density matrix, Phys. Rev. B,
47 (1993), pp. 10895–10898.

[62] Michel Daydé, Jack Dongarra, Vicente Hernández, and José M. L. M. Palma, eds.,
High Performance Computing for Computational Science - VECPAR 2004, vol. 3402 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2004.

[63] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverses of band matrices,
Math. Comp., 43 (1984), pp. 491–499.

[64] Michael Driscoll, Evangelos Georganas, Penporn Koanantakool, Edgar Solomonik,
and Katherine Yelick, A Communication-Optimal N-Body Algorithm for Direct Inter-
actions, in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, IEEE, 2013, pp. 1075–1084.

[65] Jeremy D. Frens and David S. Wise, Auto-blocking matrix-multiplication or tracking
BLAS3 performance from source code, SIGPLAN Not., 32 (1997), pp. 206–216.

[66] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto
Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococ-
cioni, Ismaila Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fab-
ris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, An-
ton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco
Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo
Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P Seitso-
nen, Alexander Smogunov, Paolo Umari, and Renata M Wentzcovitch, QUAN-
TUM ESPRESSO: a modular and open-source software project for quantum simulations
of materials, Journal of Physics: Condensed Matter, 21 (2009), p. 395502.

[67] Filippo Gioachin, Pritish Jetley, Celso L. Mendes, Laxmikant V. Kalé, and
Thomas R. Quinn, Toward Petascale Cosmological Simulations with ChaNGa, Tech.

17

Report 07-08, Parallel Programming Laboratory, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, 2007.

[68] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels, and F. H.
Streitz, Extending Stability Beyond CPU Millennium: A Micron-scale Atomistic Sim-
ulation of Kelvin-Helmholtz Instability, 2007. ACM Gordon Bell Prize.

[69] C. M. Goringe, E. Hernández, M. J. Gillan, and I. J. Bush, Linear-scaling DFT-
pseudopotential calculations on parallel computers, Computer physics communications,
102 (1997), pp. 1–16.

[70] Peter Gottschling, David S. Wise, and Michael D. Adams, Representation-transparent
matrix algorithms with scalable performance, in Proceedings of the 21st annual inter-
national conference on Supercomputing, ICS ’07, New York, NY, USA, 2007, ACM,
pp. 116–125.

[71] Alexander G. Gray and Andrew W. Moore, N-Body Problems in Statistical Learning, in
Advances in Neural Information Processing Systems, vol. 4, MIT Press, 2001, pp. 521–527.

[72] Martyn F. Guest, Ian J. Bush, Huub J. J. Van Dam, Paul Sherwood, Jens M. H.
Thomas, Joop H. Van Lenthe, Remco W. A. Havenith, and John Kendrick, The
GAMESS-UK electronic structure package: algorithms, developments and applications,
Molecular Physics, 103 (2005), pp. 719–747.

[73] Fred G. Gustavson, Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted
Transposition, ACM Trans. Math. Softw., 4 (1978), pp. 250–269.

[74] Jürgen Hafner, Ab-initio simulations of materials using VASP: Density-functional theory
and beyond, Journal of Computational Chemistry, 29 (2008), pp. 2044–2078.

[75] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and M. Taiji, 42 TFlops
Hierarchical N-body Simulations on GPUs with Applications in Both Astrophysics and
Turbulence, 2009. ACM Gordon Bell Prize.

[76] William W. Hargrove, Forrest M. Hoffman, and Thomas Sterling, The Do-It-Yourself
Supercomputer, Scientific American, 265 (2001), pp. 72–79.

[77] Peter Haynes, Chris Kriton Skylaris, Arash Mostofi, and Mike Payne, ONETEP:
Linear-scaling density-functional theory with plane waves, 2010. http://www2.tcm.phy.

cam.ac.uk/onetep/.
[78] Timothy G Heil, Stephen V O’Neil, and Henry F Schaefer, High precision valence bond

potential curve for the cl2 molecule, Chemical Physics Letters, 5 (1970), pp. 253–256.
[79] E. G. Hoel and H. Samet, Data-Parallel Spatial Join Algorithms, in Parallel Processing,

1994. ICPP 1994. International Conference on, vol. 3, aug. 1994, pp. 227 –234.
[80] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 136 (1964),

pp. B864–B871.
[81] Arieh Iserles, How Large is the Exponential of a Banded Matrix?, J. New Zealand

Math. Soc., 29 (2000), p. 177.
[82] T. Ishiyama, K. Nitadori, and J. Makino, 4.45 Pflops Astrophysical N-Body Simulation on

K computer – The Gravitational Trillion-Body Problem, 2012. ACM Gordon Bell Prize.
[83] Edwin H. Jacox and Hanan Samet, Iterative spatial join, ACM Trans. Database Syst., 28

(2003), pp. 230–256.
[84] Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V Kale, and Thomas

Quinn, Massively parallel cosmological simulations with changa, in Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, IEEE, 2008,
pp. 1–12.

[85] Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V. Kalé, and Thomas R.
Quinn, Massively parallel cosmological simulations with ChaNGa, in Proceedings of IEEE
International Parallel and Distributed Processing Symposium 2008, 2008.

[86] Laxmikant V. Kalé and Abhinav Bhatele, eds., Parallel Science and Engineering Appli-
cations: The Charm++ Approach, Taylor & Francis Group, CRC Press, Nov. 2013.

[87] Laxmikant V. Kale, Abhinav Bhatele, Eric J. Bohm, and James C. Phillips, NAnoscale
Molecular Dynamics (NAMD), in Encyclopedia of Parallel Computing (to appear),
D. Padua, ed., Springer Verlag, 2011.

[88] Laxmikan V. Kalé, Sameer Kumar, and J. DeSouza, A Malleable-Job System for Time-
shared Parallel Machines, in Cluster Computing and the Grid, 2002. 2nd IEEE/ACM
International Symposium on, May 2002, pp. 230–230.

[89] Atsushi Kawai, Toshiyuki Fukushige, Junichiro Makino, and Makoto Taiji, GRAPE-
5: A special-purpose computer for N-body simulation, arXiv preprint astro-ph/9909116,
(1999).

[90] A. Kawai, T. Fushushige, and J. Makino, Astrophysical N-Body Simulation, 1999. ACM
Gordon Bell Prize.

18

http://www2.tcm.phy.cam.ac.uk/onetep/
http://www2.tcm.phy.cam.ac.uk/onetep/

[91] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation
Effects, Phys. Rev., 140 (1965), pp. A1133–A1138.

[92] Dongryeol Lee and Alexander G. Gray, Faster Gaussian Summation: Theory and Ex-
periment, in Proceedings of the Twenty-second Conference on Uncertainty in Artificial
Intelligence, 2006.

[93] , Fast High-dimensional Kernel Summations Using the Monte Carlo Multipole Method,
in Advances in Neural Information Processing Systems (NIPS) 21 (Dec 2008), MIT Press,
2009.

[94] X.-P. Li, R. W. Nunes, and David Vanderbilt, Density-matrix electronic-structure method
with linear system-size scaling, Phys. Rev. B, 47 (1993), pp. 10891–10894.

[95] Michael D. Lieberman, Jagan Sankaranarayanan, and Hanan Samet, A Fast Similar-
ity Join Algorithm Using Graphics Processing Units, in Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, Washington, DC, USA, 2008, IEEE
Computer Society, pp. 1111–1120.

[96] Jonathan Lifflander, Sriram Krishnamoorthy, and Laxmikant Kalé, Steal Tree: Low-
Overhead Tracing of Work Stealing Schedulers, in Proceedings of the 34rd ACM SIG-
PLAN conference on Programming Language Design and Implementation, (To Appear),
PLDI ’13, ACM, 2013.

[97] K. Patrick Lorton and David S. Wise, Analyzing block locality in morton-order and
morton-hybrid matrices, in Proceedings of the 2006 workshop on Memory performance:
Dealing with Applications, systems and architectures, MEDEA ’06, New York, NY, USA,
2006, ACM, pp. 5–12.

[98] W. Ma and S. Krishnamoorthy, Data-driven fault tolerance for work stealing computations,
in Proceedings of the 26th ACM international conference on Supercomputing, ACM, 2012,
pp. 79–90.

[99] Junichiro Makino, Toshiyuki Fukushige, Masaki Koga, and Ken Namura, GRAPE-
6: The massively-parallel special-purpose computer for astrophysical particle simulation,
arXiv preprint astro-ph/0310702, (2003).

[100] Junichiro Makino and Makoto Taiji, Scientific Simulations with Special-Purpose
Computers–the GRAPE Systems, vol. 1, 1998.

[101] Junichiro Makino, Makoto Taiji, Toshikazu Ebisuzaki, and Daiichiro Sugimoto,
Grape-4: A massively parallel special-purpose computer for collisional n-body simula-
tions, The Astrophysical Journal, 480 (1997), p. 432.

[102] Gabriel Martinez, Mark Gardner, and Wu-chun Feng, CU2CL: A CUDA-to-OpenCL
translator for multi-and many-core architectures, in Parallel and Distributed Systems
(ICPADS), 2011 IEEE 17th International Conference on, IEEE, 2011, pp. 300–307.

[103] R. McWeeny, The Density Matrix in Self-Consistent Field Theory. I. Iterative Construction
of the Density Matrix, P. Roy. Soc. Lond A Mat., 235 (1956), pp. 496–509.

[104] Chao Mei, Yanhua Sun, Gengbin Zheng, Eric J. Bohm, Laxmikant V. Kalé, James
C.Phillips, and Chris Harrison, Enabling and Scaling Biomolecular Simulations of
100 Million Atoms on Petascale Machines with a Multicore-optimized Message-driven
Runtime, in Proceedings of the 2011 ACM/IEEE conference on Supercomputing, Seattle,
WA, November 2011.

[105] Harshitha Menon and Laxmikant Kalé, A Distributed Dynamic Load Balancer for Itera-
tive Applications, in Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’13, New York, NY, USA, 2013, ACM,
pp. 15:1–15:11.

[106] John M. Millam and Gustavo E. Scuseria, Linear scaling conjugate gradient density ma-
trix search as an alternative to diagonalization for first principles electronic structure
calculations, The Journal of Chemical Physics, 106 (1997), pp. 5569–5577.

[107] , Linear scaling conjugate gradient density matrix search as an alternative to diago-
nalization for first principles electronic structure calculations, The Journal of Chemical
Physics, 106 (1997), pp. 5569–5577.

[108] Priti Mishra and Margaret H. Eich, Join processing in relational databases, ACM Com-
put. Surv., 24 (1992), pp. 63–113.

[109] Tsuyoshi Miyazaki, Ultra-large-scale first-principles calculations by the k computer, NIMS
NOW, 11 (2014).

[110] A. Moore, A. Connolly, C. Genovese, Alexander G. Gray, L. Grone, N. Kanidoris,
R. Nichol, J. Schneider, A. Szalay, I. Szapudi, and L. Wasserman, Fast Algo-
rithms and Efficient Statistics: n-point Correlation Functions, in Proceedings of MPA/M-
PE/ESO Conference Mining the Sky, 2000.

[111] T. Narumi, Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futatsugi, R. Yanai,

19

R. Himeno, S. Fujikawa, M. Taiji, and M. Ikei, A 55 TFLOPS Simulation of Amyloid-
forming Peptides from Yeast Prion Sup35 with the Special-purpose Computer System
MDGRAPE-3, 2006. ACM Gordon Bell Prize.

[112] Anders M. N. Niklasson, Expansion algorithm for the density matrix, Phys. Rev. B, 66
(2002), p. 5.

[113] Anders M. N. Niklasson, C. J. Tymczak, and Matt Challacombe, Trace resetting den-
sity matrix purification in O(N) self-consistent-field theory, J. Chem. Phys., 118 (2003),
pp. 8611–8620.

[114] Gabriel Noaje, Christophe Jaillet, and Michaël Krajecki, Source-to-source code trans-
lator: OpenMP C to CUDA, in High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference on, IEEE, 2011, pp. 512–519.

[115] Christian Ochsenfeld, Christopher A. White, and Martin Head-Gordon, Linear and
sublinear scaling formation of Hartree–Fock-type exchange matrices, The Journal of
Chemical Physics, 109 (1998), pp. 1663–1669.

[116] Adam H. R. Palser and David E. Manolopoulos, Canonical purification of the density
matrix in electronic-structure theory, Phys. Rev. B, 58 (1998), pp. 12704–12711.

[117] Artur Podobas, Mats Brorsson, and Karl-filip Faxén, A comparative performance study
of common and popular task-centric programming frameworks, (2015), pp. 1–28.

[118] A. Rahimian, I. Lashuk, S. Veerapaneni, S. A. Chandramowlishwaran, J. Vetter,
R. Vuduc, D. Zorin, and G. Biros, Petascale Direct Numerical Simulation of Blood
Flow on 200K Cores and Heterogeneous Architectures, 2010. ACM Gordon Bell Prize.

[119] Ioan Raicu, Ian T. Foster, and Pete Beckman, Making a Case for Distributed File Sys-
tems at Exascale, in Proceedings of the Third International Workshop on Large-scale
System and Application Performance, LSAP ’11, New York, NY, USA, 2011, ACM,
pp. 11–18.

[120] Parikshit Ram, Dongryeol Lee, William March, and Alexander G. Gray, Linear-
time Algorithms for Pairwise Statistical Problems, in Advances in Neural Information
Processing Systems (NIPS) 22 (Dec 2009), MIT Press, 2010.

[121] Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann, Effects of compiler optimiza-
tions in OpenMP to CUDA translation, in OpenMP in a Heterogeneous World, Springer,
2012, pp. 169–181.

[122] Hanan Samet, The design and analysis of spatial data structures, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[123] , Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann,
2006.

[124] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale, Maximizing
Throughput of Overprovisioned HPC Data Centers Under a Strict Power Budget, in Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’14, Piscataway, NJ, USA, 2014, IEEE Press, pp. 807–818.

[125] Osman Sarood, Esteban Meneses, and L. V. Kale, A “Cool” Way of Improving the
Reliability of HPC Machines, in Proceedings of The International Conference for High
Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, November
2013.

[126] Eric Schwegler, Matt Challacombe, and Martin Head-Gordon, Linear scaling com-
putation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental
fock build, J. Chem. Phys., 106 (1997), pp. 9708–9717.

[127] Dimitrios Skarlatos, Polyvios Pratikakis, and Dionisios Pnevmatikatos12, Towards
Reliable Task Parallel Programs, in 5th HiPEAC Workshop on Design for Reliability,
2013.

[128] Chris Kriton Skylaris, Peter D. Haynes, Arash A. Mostofi, and Mike C. Payne, In-
troducing ONETEP: Linear-scaling density functional simulations on parallel computers,
The Journal of Chemical Physics, 122 (2005), p. 084119.

[129] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband, Udaya A.
Ranawake, and Charles V. Packer, Beowulf: A Parallel Workstation For Scientific
Computation, in In Proceedings of the 24th International Conference on Parallel Process-
ing, CRC Press, 1995, pp. 11–14.

[130] A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Elec-
tronic Structure Theory, Dover Publications, 1996.

[131] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam,
D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong, NWChem: A
comprehensive and scalable open-source solution for large scale molecular simulations,
Computer Physics Communications, 181 (2010), pp. 1477 – 1489.

20

[132] Robert A. van de Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication
algorithm, Concurrency Practice and Experience, 9 (1997), pp. 255–274.

[133] Joost VandeVondele, Urban Borštnik, and Jürg Hutter, Linear Scaling Self-Consistent
Field Calculations with Millions of Atoms in the Condensed Phase, J. Chem. Theory
Comput., 8 (2012), pp. 3565–3573.

[134] John Paul N. Walters, Fault-tolerant Techniques for High Performance Computing and a
Bioinformatics Application, PhD thesis, Detroit, MI, USA, 2007. AAI3295992.

[135] Michael S. Warren, 2HOT: an improved parallel hashed oct-tree n-body algorithm for cos-
mological simulation, in Proceedings of SC13: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ACM, 2013, p. 72.

[136] Michael S. Warren and John K. Salmon, Astrophysical N-Body Simulations Using Hi-
erarchical Tree Data Structures, in Supercomputing ’92, Los Alamitos, 1992, IEEE
Comp. Soc., pp. 570–576. (1992 Gordon Bell Prize winner).

[137] , Simulation of 9 million gravitating stars by parallelizing a tree code, 1992. ACM
Gordon Bell Prize.

[138] , A parallel, portable and versatile treecode, SIAM, Philadelphia, 1995, ch. 1.
[139] , Simulating the motion of 322,000,000 self-gravitating particles, 1997. ACM Gordon

Bell Prize.
[140] Michael S. Warren, John K. Salmon, D. J. Becker, M. P. Goda, and T. Sterling, Two

problems: vortex fluid flow modeled with 360,000 particles; galaxy formation following
10,000,000 selfgravitating particles, 1997. ACM Gordon Bell Prize.

[141] David S. Wise, Representing matrices as quadtrees for parallel processors: extended abstract,
SIGSAM Bull., 18 (1984), pp. 24–25.

[142] , Ahnentafel Indexing into Morton-Ordered Arrays, or Matrix Locality for Free, in
Euro-Par 2000 Parallel Processing, Arndt Bode, Thomas Ludwig, Wolfgang Karl, and
Roland Wismüller, eds., vol. 1900 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2000, pp. 774–783.

[143] David S. Wise and John Franco, Costs of quadtree representation of nondense matrices,
Journal of Parallel and Distributed Computing, 9 (1990), pp. 282 – 296.

[144] David S. Wise, Jeremy D. Frens, Yuhong Gu, and Gregory A. Alexander, Language
support for Morton-order matrices, SIGPLAN Not., 36 (2001), pp. 24–33.

[145] Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, and Tadashi
Watanabe, The K computer: Japanese next-generation supercomputer development
project, in ISLPED ’11: Proceedings of the 17th IEEE/ACM International Symposium
on Low-power Electronics and Design, Piscataway, NJ, USA, 2011, IEEE Press.

[146] Gongpu Zhao, Juan R. Perilla, Ernest L. Yufenyuy, Xin Meng, Bo Chen, Jiying Ning,
Jinwoo Ahn, Angela M. Gronenborn, Klaus Schulten, Christopher Aiken, and
Peijun Zhang, Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom
molecular dynamics, Nature, 497 (2013), pp. 643–646.

[147] Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé, A scalable double in-memory check-
point and restart scheme towards exascale, in Dependable Systems and Networks Work-
shops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on, IEEE, 2012, pp. 1–6.

21

